
FilePack

Introduction
As the name implies, FilePack is a collection of external routines that provide the 4th DIMENSION devel-
oper with access to many useful and otherwise inaccessible features of the file storage subsystem of the
MacOS and Windows operating systems. This release of FilePack provides support for the new “plug-in”
file format for extensions used by 4D v3.5, as well as native code support for the PowerPC processor and
the WIN32 operating systems used by Intel computers (Windows NT, Windows 95 and Windows 3.x with
WIN32s).

Before we get to the details of how to use FilePack, we need to go through the routine legal stuff:

FilePack v2.5 is © copyright 1989-1996, RKP Software. You are granted, free of charge, the right to use
FilePack as part of any commercial, contract or personal-use 4D application you wish, with the few excep-
tions listed below. You are under no obligation to give me any credit in your About box or documentation,
nor are you required to pay any licencing fees of any kind. However you choose to use the package, you
must do so with the usual disclaimers: FilePack and its documentation is offered “as is” for you to use at
your own risk, with no expectation of support, bug-fixes or upgrades from me. I offer absolutely no warran-
tee whatsoever regarding its reliability, fitness for any specific use, or its compatibility with your 4D pro-
gram, other extensions, or the computer, operating system or network you may be using.

You may distribute FilePack only under the following conditions:

1. You may distribute the unaltered self-extracting archive file, which includes this documentation and
the FilePack software files in their complete, original and unedited forms. No fee of any kind can be
associated with such distribution. This means no fee for expenses, consultation, installation or what-
ever. If you want an exception to this, contact me.

2. You may distribute the external package as part of a commercial, shareware or contract database
application, so long as no fee is charged for the package itself. If the receiver has access to the source
code, you must give them a copy of this documentation file, unaltered, as well. If you receive any
money for the distribution, do NOT give the client the impression that they are paying for FilePack
and for the right to call me for support.

3. You may NOT sell FilePack by itself, or as part of any collection or library of externals, or as part of
any 4D development “toolbox” or “shell”. If you have questions or are uncertain regarding your right
to use FilePack with a specific product, please call and we can talk it over.

FilePack is being released under this license for those of you who are already using a previous release of
FilePack, and who are satisfied with its status as a free tool. FilePack is also available as part of my com-
mercial product, PowerPacks. PowerPacks v2.5 has over 300 routines in 17 separate packages, and is
compatible with both 4th DIMENSION and 4D Server on the Macintosh and Windows. Please contact me if
you have any questions.

I am eager to hear suggestions, constructive criticism and bug reports regarding FilePack. I can be con-
tacted at:

Bob Pulgino, RKP Software
8533 Crestview Drive
Fairfax, VA 22031-2802
E-mail: bpulgino@clark.net (until July 1, 1996)

bob@rkp.com (thereafter)
Voice: (703) 205-9845
Fax: (703) 205-9846

Page 2.

FilePack 2.5

The previous version of FilePack was compiled into four separate packages, because of the memory
requirements that the old format for external packages (code resources) made on your applications. With
code resources, the size of each package was generally more significant than the number of packages
used by an application when determining the impact that extensions would have on its memory require-
ments.

With the advent of the new “plug-in” file format, the number of individual packages used by a given
application has more of an impact on the memory requirements than the size of the given packages. As a
result, we have reversed the earlier trend and recompiled FilePack as a single package. Because of this
change, it is important that you manually delete all old copies of the FilePack packages before installing
this new package if you are updating from a previous release of FilePack.

This release of FilePack is distributed in four different formats.:

FilePack for the Mac in the new “Plug-In” file format.
Put this in your “Mac4DX” folder on Mac servers.

FilePack for the Mac in the traditional code-resource
format. Use this for pre-4D 3.2.5 apps.

FilePack for the Mac that has been “split” into 2 files
(data & resource fork) for use on Windows servers for
Mac clients. Put both files in your MAC4DX directory
on the Windows server.

FilePack for Windows. Put both files in the WIN4DX
directory on either Mac or Windows servers.

Because of the new file formats, OS platforms, and the myriad of different configurations of the 4D tools
you can use to deploy your applications, making use of extensions like FilePack isn’t always as easy as it
used to be. Be sure to carefully follow the instructions given by your particular 4th DIMENSION interpreter
and compiler.

Page 3.

FilePack 2.5

File System Attributes
A computer’s operating system maintains a great deal of information on each disk about the files stored
there, in addition to just the file names and content. When your application has to work with existing files
or create new ones, you often will need to be able to access and change this information as well.

The Macintosh OS maintains the following attributes for each file:

Type Code: A four-character code that is intended to be used by applications to identify the type of
information contained in the file and its organization or structure. Commonly used file types
include “TEXT” for simple ASCII text files, “PICT” for generic graphic files and “APPL” for applica-
tion files. Files created by commercial software with proprietary contents have unique type codes
as well; for example, 4th Dimension assigns a type code of “BAS5” to its database-structure
documents.

Creator Code: This is also a four-character code, used by the Finder to link documents with the appli-
cation that created it. When you ask the Finder to open a document, it will first look at the creator-
code for that document. It will then search for an application with the same creator code, and if it
finds one, it will use that application to open the document.

Locked Flag: If the locked flag is set, no application (including your application and the Finder) will be
able rename, trash or modify the file or folder, without unlocking it first. The user will be able to
unlock it by un-checking the Locked checkbox in the Finder’s Get Info dialog.

Invisible Flag: If this flag is set, the file or folder will not be visible to the user in any of the Finder’s
direc-tory windows. The use of invisible files is discouraged these days, and should only be consid-
ered for special circumstances; an invisible file is impossible to detect or manipulate in any way by
the typical user.

Stationery Flag: If this flag is set for a document, the document will be treated in a special way by the
Finder and its creator application when it is opened: instead of editing the document itself, the
user will be given an untitled copy of the document, and when the copy is saved, the original
stationery document will remain intact. The goal of this mechanism is to allow documents to be
created that will be used as templates, starting points for new documents intended for a specific,
user-defined purpose. A stationery document will be given a unique icon that resembles a pad of
paper.

Creation Date & Time: The Finder keeps track of the exact date and time of day that each file and
folder was created. This information could be useful to you in determining the age or relevance of
the infor-mation contained in a given file.

Modification Date & Time: The Finder also keeps track of the exact date and time of day that each file
and folder was most recently modified. This information could be useful to you when comparing
files, to determine which file contains the most recent information.

Backup Date & Time: These fields are meant to be used by specialized backup utilities, to keep track
of when a file or folder was last backed up. They are not maintained by the Finder. If you make use
of them, be careful not to end up interfering with your users’ backup methods.

Logical Size: The logical size of a file is the measure of the exact number of bytes of information it
contains (counting both the data and resource forks).

Physical Size: The physical size of a file is the measure of the amount of space allocated to store it on
the disk. Space is allocated to a file in discrete, constant-size blocks; the size of the allocation block
de-pends on the overall size of the volume, but is usually 1,024 bytes.

Page 4.

FilePack 2.5

On the Windows platform, some of these attributes are available and some aren’t. A summary of the
differences between the file-system attributes used by the MacOS and the WIN32 API follows:

• WIN32 does not support the use of file type- and creator-code attributes. Instead, a predefined file
name “extension” of one to three characters, separated from the rest of the file name by a period, is
used to define both the type of data contained in the file and which application should be used to
open it. 4th Dimension for Windows makes use of an internal table to map standard MacOS file type
codes to common Windows file extensions, and PowerPacks supports this mechanism. You can
extend this table using the new MAP FILE TYPES command.

• WIN32 refers to the “Locked” flag as the “Read-Only” attribute, and the “Invisible” flag as the “Hid-
den” attribute.

• WIN32 has no attribute that is analogous to the MacOS “Stationery” flag.

• WIN32 has no direct analog to the MacOS “Backup Date & Time”; it instead uses the “Archive”
boolean attribute, which a future version of PowerPacks will enable you to access.

GetFileCreator

Description:

GetFileCreator (FilePath:T): CreatorCode:S

This function enables you to determine the creator code of a file.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

Return Value:

CreatorCode The 4-byte creator code for the file.

Platform Notes:

On the Windows platform, this routine always returns “????”, since there is no file attribute which corre-
sponds to the Macintosh creator code.

GetFileType

Description:

GetFileType (FilePath:T): TypeCode:S

This function enables you to determine the file-type code of a specific file.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

Return Value:

TypeCode........................... The 4-byte type code for the file.

Platform Notes:

Under Windows, this routine uses 4D’s internal table to determine the type code which corresponds to the
extension of the specified file. You can extend this table to include the type codes and extensions of your
files using the MAP FILE TYPES command.

Page 5.

FilePack 2.5

SetFileCreator

Description:

SetFileCreator (FilePath:T; CreatorCode:S): ResultCode:I

This function enables you to assign a new creator code to a file.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

CreatorCode The new 4-byte creator code for the file.

Return Value:

ResultCode A code indicating if the creator code was assigned successfully. A non-zero
result indicates that an error occurred.

Platform Notes:

On the Windows platform, this routine does nothing since there is no file attribute which corresponds to
the Macintosh creator code.

SetFileType

Description:

SetFileType (FilePath:T; TypeCode:S): ResultCode:I

This function enables you to assign a new file-type code to a file.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

TypeCode........................... The new 4-byte file-type code for the file.

Return Value:

ResultCode An error code indicating whether or not the code was assigned success-
fully. A non-zero result indicates that there was an error.

Platform Notes:

Under Windows, this routine uses 4D’s internal table to determine the file extension which corresponds to
the specified type code, and if found, it changes the file extension accordingly. You can extend this table
to include the type codes and extensions of your files using the MAP FILE TYPES command.

Page 6.

FilePack 2.5

GetFileInfo

Description:

GetFileInfo (FilePath:T; CreatorCode:S; TypeCode:S): ResultCode:I

This function enables you to read both the creator and file-type codes of a file in a single step.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

CreatorCode Returns the 4-byte creator code for the file. Since this parameter returns a
value, you must use a global variable of type STRING (4 bytes or larger) for
this parameter.

TypeCode........................... Returns the 4-byte type code for the file. Since this parameter returns a
value, you must use a global variable of type STRING (4 bytes or larger) for
this parameter.

Return Value:

ResultCode An error code indicating whether or not the codes were read successfully.
A non-zero result indicates that there was an error.

Platform Notes:

Under Windows, the creator code returned by this routine will always be “????”, since there is no corre-
sponding file attribute. The type code returned will be based on the extension of the specified file, as
defined by 4D’s internal MAP FILE TYPES table.

SetFileInfo

Description:

SetFileInfo (FilePath:T; CreatorCode:S; TypeCode:S): ResultCode:I

This function enables you to assign a new file-type and creator code for a file in a single step.

Parameters:

FilePath............................... A text expression containing the fully-qualified path to the file.

CreatorCode A four-byte string containing the file-creator code to be assigned to the
file.

TypeCode........................... A four-byte string containing the file-type code to be assigned to the file.

Return Value:

ResultCode An error code indicating whether or not the file codes were assigned
successfully. A non-zero result indicates that there was an error.

Platform Notes:

Under Windows, the creator code passed when using this routine is ignored, since there is no correspond-
ing file attribute. The routine uses 4D’s internal table to determine the file extension which corresponds to
the specified type code, and if found, it changes the file extension accordingly. You can extend this table
to include the type codes and extensions of your files using the MAP FILE TYPES command.

Page 7.

FilePack 2.5

GetFileCDate

Description:

GetFileCDate (Path:T): CreatedDate:D

This function enables you to determine the creation date of a file or folder.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

CreatedDate The date recorded by the Finder that the file or folder was created.

GetFileCTime

Description:

GetFileCTime (Path:T): CreatedTime:L

This function enables you to determine the time of day that a file or folder was created.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

CreatedTime The time of day recorded by the Finder that the file or folder was created.
The time is returned as a long integer representing the number of seconds
since midnight.

GetFileCSeconds

Description:

GetFileCSeconds (Path:T): CreatedSeconds:L

This function returns the date and time that a specified file or folder was created, expressed as a single
value, the total number of seconds. Using this value instead of the date and time returned by
GetFileCDate and GetFileCTime allows you to make comparisons more easily.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

CreatedSeconds The date and time that the specified file or folder was created, expressed
as the number of seconds since midnight, January 1, 1904.

Platform Notes:

Under the Macintosh OS, the value returned represents the number of seconds since midnight, January 1,
1904. Under Windows, it represents the number of seconds since midnight, January 1, 1601.

Page 8.

FilePack 2.5

SetCDateTime

Description:

SetCDateTime (Path:T; CreatedDate:D; CreatedTime:L): Result:I

This function enables you to assign a new created date and time to a file or folder.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

CreatedDate A date expression providing the new creation date.

CreatedTime A long-integer expression providing the new creation time.

Return Value:

Result An error code indicating whether or not the date and time were assigned
successfully. A non-zero result indicates that there was an error.

GetFileMDate

Description:

GetFileMDate (Path:T): ModDate:D

This function enables you to determine the date a file or folder was last modified.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

ModDate The date recorded by the Finder that the file or folder was last modified.

GetFileMTime

Description:

GetFileMTime (Path:T): ModTime:L

This function enables you to determine the time of day that a file or folder was last modified.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

ModTime The time of day recorded by the Finder that the file or folder was last
modified. The time is returned as a long integer representing the number
of seconds since midnight.

Page 9.

FilePack 2.5

GetFileMSeconds

Description:

GetFileMSeconds (Path:T): ModSeconds:L

This function returns the date and time that a specified file or folder was last modified, expressed as a
single value, the total number of seconds. Using this value instead of the date and time returned by
GetFileMDate and GetFileMTime allows you to make comparisons of files more easily.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

ModSeconds The date and time that the specified file or folder was most recently
modified, expressed as a single value, the number of seconds since mid-
night, January 1, 1904.

Platform Notes:

Under the Macintosh OS, the value returned represents the number of seconds since midnight, January 1,
1904. Under Windows, it represents the number of seconds since midnight, January 1, 1601.

SetMDateTime

Description:

SetMDateTime (Path:T; ModDate:D; ModTime:L): Result:I

This function enables you to assign a new modified date and time to a file or folder.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

ModDate A date expression providing the new modification date.

ModTime A long-integer expression providing the new modification time.

Return Value:

Result An error code indicating whether or not the date and time were assigned
successfully. A non-zero result indicates that there was an error.

Page 10.

FilePack 2.5

GetFileBDate

Description:

GetFileBDate (Path:T): BackedUpDate:D

This function enables you to determine the date a file or folder was last backed up. Note that the Finder
does not automatically maintain the backed-up date and time attributes; unless specialized software is
used, this value is likely to be zero (!01/01/04!).

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

BackedUpDate The date recorded by the user’s backup utility that the file or folder was
last backed up.

Platform Notes:

The Windows platform has no corresponding file attribute, so this routine always returns a zero date value
(!01/01/04!).

GetFileBTime

Description:

GetFileBTime (Path:T): BackedUpTime:L

This function enables you to determine the time of day that a file or folder was last backed up. Note that
the Finder does not automatically maintain the backed-up date and time attributes; unless specialized
software is used, this value is likely to be zero (†00:00:00†).

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

BackedUpTime The time of day recorded by the user’s backup utility that the file or folder
was last modified. The time is returned as a long integer representing the
number of seconds since midnight.

Platform Notes:

The Windows platform has no corresponding file attribute, so this routine always returns a zero time value
(†00:00:00†).

Page 11.

FilePack 2.5

GetFileBSeconds

Description:

GetFileBSeconds (Path:T): BackedUpSeconds:L

This function returns the date and time that a specified file or folder was last backed up, expressed as a
single value, the number of seconds since midnight, January 1, 1904. Using this value instead of the date
and time returned by GetFileBDate and GetFileBTime allows you to make comparisons of files more easily.
Note that the Finder does not automatically maintain the backed-up date and time attributes; unless
specialized software is used, these values are likely to be zero (!01/01/04! and †00:00:00†).

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

Return Value:

BackedUpSeconds The date and time that the specified file or folder was most recently
backed, expressed as a single value, the number of seconds since mid-
night, January 1, 1904.

Platform Notes:

The Windows platform has no corresponding file attribute, so this routine always returns zero values.

SetBDateTime

Description:

SetBDateTime (Path:T; BackedUpDate:D; BackedUpTime:L): Result:I

This function enables you to assign a new backed-up date and time to a file or folder. Note that many
specialized backup utilities depend on this date to properly perform incremental backups of the files on a
hard disk. If you use this routine indescriminantly, you run the risk of interfering with your users’ backup
procedures.

Parameters:

Path A text expression containing the fully-qualified path to the file or folder.

BackedUpDate A date expression providing the new backed-up date.

BackedUpTime A long-integer expression providing the new backed-up time.

Return Value:

Result An error code indicating whether or not the date and time were assigned
successfully. A non-zero result indicates that there was an error.

Platform Notes:

This routine has no effect when used under Windows, since that platform has no corresponding file at-
tribute.

Page 12.

FilePack 2.5

GetFileLogSize

Description:

GetFileLogSize (FilePath:T): LogSize:L

This function returns the logical size of a file; i.e. the number of bytes that could actually be imported from
the file.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

Return Value:

LogSize The number of bytes of data in the file.

GetFilePhySize

Description:

GetFilePhySize (FilePath:T): PhySize:L

This function determines the physical size of a file; i.e. the number of bytes of space it occupies on disk.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

Return Value:

PhySize The number of bytes of space occupied by the file on disk.

GetFileLocked

Description:

GetFileLocked (FilePath:T): ResultCode:I

This function enables you to determine if the specified file has been locked.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

Return Value:

ResultCode A zero if the file is unlocked, a one if the file is locked, or a negative
number if an error occurred.

Page 13.

FilePack 2.5

SetFileLocked

Description:

SetFileLocked (FilePath:T; SetFlag:I): ResultCode:I

This function enables you to lock or unlock the specified file.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

SetFlag A number specifying whether the file is to be locked or unlocked. If this
value is zero, the file will be unlocked; if it is 1 (or any non-zero value), the
file will be locked.

Return Value:

ResultCode An error code indicating whether or not the file was locked or unlocked
successfully. A non-zero result indicates that there was an error.

GetFileStatnry

Description:

GetFileStatnry (FilePath:T): ResultCode:I

This function enables you to determine if the specified file has been marked as a “stationery” document,
either by the user via the Finder’s Get Info dialog, or by the application that created it.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

Return Value:

ResultCode A zero if the file is not a stationery pad, a one if it is, or a negative number
if an error occurred.

Platform Notes:

This routine always returns zero when used under Windows, since that platform has no corresponding file
attribute.

SetFileStatnry

Description:

SetFileStatnry (FilePath:T; SetFlag:I): ResultCode:I

This function enables you to set or reset the attribute of a file that makes it a Finder “stationery” docu-
ment.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

SetFlag A number specifying whether the file is to be a stationery document or not.
If this value is a 1 (or any non-zero value), the file will be made into a
stationery document (the stationery attribute will be set); if it is a zero, the
stationery attribute will be reset and the file will not be a stationery docu-
ment.

Page 14.

FilePack 2.5

Return Value:

ResultCode An error code indicating whether or not the file’s attribute was set success-
fully. A non-zero result indicates that there was an error.

Platform Notes:

This routine has no effect when used under Windows, since that platform has no corresponding file at-
tribute.

GetFileVisible

Description:

GetFileVisible (FilePath:T): ResultCode:I

This function enables you to determine if the specified file has been marked as a “hidden” or “invisible”
file, such that it will not appear in its Finder window or in a standard file dialog.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

Return Value:

ResultCode If the file is visible (has not been made hidden), a value of 1 is returned; a
zero value is returned if the file is invisible (hidden from the user in the
Finder and standard-file dialogs). A negative error code is returned if an
error occurs.

SetFileVisible

Description:

SetFileVisible (FilePath:T; SetFlag:I): ResultCode:I

This function enables you to set or reset the “invisible” attribute of the specified file.

Parameters:

FilePath............................... A text expression containing the fully-qualified file name.

SetFlag A number specifying whether the file is to be made visible or not. If this
value is a 1, the file will be made visible to the user; if it is a zero, the
invisible attribute will be set and the file will not be visible to the user.

Return Value:

ResultCode An error code indicating whether or not the file’s attribute was set success-
fully. A non-zero result indicates that there was an error.

Page 15.

FilePack 2.5

The Hierarchical Filing System
The principle job of the OS file system is to organize files on a disk into user-defined groups called folders
or directories. Each folder can contain files and other folders, which in turn can contain more files and
folders, and so on. On the Macintosh, this hierarchical arrangement of files and folders has been appropri-
ately dubbed the Hierarchical File System (HFS).

In order to perform an operation on a document or folder with a PowerPacks routine, you need to com-
pletely identify it by supplying its full “path” name. The path name of a file or folder always begins with the
name of the volume it is stored on, and ends with the name of the object itself. If the object is within a
folder, the name of that folder must be included in the path, between the volume and object name; if the
folder is “nested” within one or more other folders, the names of each folder must be included in the path
name, in the top-to-bottom order of the folder hierarchy. Finally, each name component in the path must
be separated by a colon character; if the object itself is a folder, the path should end with a colon charac-
ter as well.

Each file entry on a Macintosh volume actually represents two physical components, a “data fork” and a
“resource fork”. The resource fork is used to store static data structures used by Macintosh applications for
a wide variety of purposes.

In the illustration below, an example of a typical hierarchical arrangement of files and folders is depicted,
along with a few examples of the path names for items in that arrangement.

On a Windows machine, these concepts are basically the same, with the following minor exceptions:

• Windows volumes are not given a name by the user in the same way as Macintosh volumes. Windows
volumes are referred to by a single letter which designates a physical or logical disk drive, followed by
a colon character. Diskette drive volumess are usually referred to as “A:’ and “B:”, “C:” usually refers
to the startup hard disk volume, and “D:” through “Z:” are used to refer to secondary hard disks, CR-
ROMs and network volumes.

• The component names that make up a path name are delimited using the back-slash character “\”,
instead of a colon.

• The MS-DOS operating system, upon which Windows is based, limits names of files and folders to 8
characters and total path name length to 260 characters.(Windows NT and Windows 95 support new
files systems that allow users to specify names longer than this.)

• Windows file systems do not support the concept of separate data and resource forks for a given file;
4th Dimension works around this difference by storing the resource fork in a separate file which has
the same name as the data file, but uses a special filename extension (usually “.rsr”).

Page 16.

FilePack 2.5

The illustration below shows how the previous example would look on a Windows machine:

Each folder on a given volume is actually a separate catalog containing the locations and attributes of each
file and folder it contains. The top (or “root”) level of each volume is also a separate catalog for those
objects not nested within other folders. When we refer to a file-system catalog, therefore, we are referring
to the list of files and folders contained within a specific folder or at the root level of a volume. FilePack
provides several routines for basic operations with HFS catalogs:

• The NewFolder routine enables you to create a new folder anywhere on a given volume.

• The HFSParentName and HFSShortName routines are provided to give you an easy way to break full
path names down into their component file and folder names.

• The CopyFile routine allows you to make a copy of a file to any folder on any mounted volume.

• The HFSCopy routine allows you to copy entire directories.

• The HFSMove routine enables you to move a file or folder from one catalog to another on a given
volume.

• The HFSRename routine enables you to rename a file, folder or volume.

• The HFSDelete routine will delete a file or a folder (if it is empty).

• The HFSExists routine allows you to test to see if an object with a given path name is already defined.

• The HFSCatToArray routine is used to load the contents of a specific catalog into an array.

• HFSGetCatCount and HFSGetCatItem allow you to “step through” the items in a catalog, one at a
time.

NewFolder

Description:

NewFolder (NewFolderPath:T): ResultCode:I

Given a pathname of a non-existing folder whose parent path does exist (such as returned by
PutFileName), this function creates the folder.

Parameters:

NewFolderPath The pathname of the new folder. The pathname must specify a new name
in an existing directory.

Return Value:

ResultCode Zero if the folder was created successfully; if an error occurs, the error
code will be returned.

Page 17.

FilePack 2.5

HFSParentName

Description:

HFSParentName (ThePath:T): ParentPath:T

This function returns the path for the folder that a given file or folder is in; it simply strips away the file’s
simple name from its fully-qualified name.

Parameters:

ThePath A text expression containing the fully-qualified file or folder path.

Return Value:

ParentPath The path for the specified file name; i.e., all characters in the parameter
value up to and including the last colon in the text value.

HFSShortName

Description:

HFSShortName (ThePath:T): ShortName:T

This function returns the simple name for a given file or folder; it simply strips away the object’s path name
from its fully-qualified name. This performs the complimentary function to the HFSParentName routine.

Parameters:

ThePath A text expression containing the fully-qualified file or folder path.

Return Value:

ShortName The simple name for the specified file or folder; i.e., all characters in the
parameter value following the last path delimiter in the string.

CopyFile

Description:

CopyFile (OldFilePath:T; NewFilePath:T): ResultCode:I

This function allows you to make a copy of an existing file to any folder on any mounted disk. The copy will
have the same file-system attributes as the original.

Parameters:

OldFilePath A text expression containing the fully-qualified name of the file to be
copied.

NewFilePath A text expression containing the fully-qualified name of the copy of the file
to be created. The NewFilePath parameter specifies which disk will hold
the copy, the folder to put it in, and what its name should be. Therefore,
this path must refer to a non-existing file in an existing directory; i.e. the
volume name and folders specified must already exist, but the file name
must not.

Return Value:

ResultCode An error code indicating whether or not the file copy was created success-
fully. A non-zero result indicates that there was an error.

Page 18.

FilePack 2.5

Platform Notes:

On the Macintosh platform, both the data and resource forks will be copied. On Windows, the routine will
look for an associated resource file and attempt to copy it as well.

If you want to include the resource fork when running on the Mac, but ignore the resource file when
running on Windows, copy the files individually using the HFSCopyData routine.

If you want to ignore the resource forks on both the Mac and Windows, use the CopyDataFile routine.

CopyDataFile

Description:

CopyDataFile (OldFilePath:T; NewFilePath:T): ResultCode:I

This function works almost the same as the CopyFile routine, with the exception that it ignores the re-
source fork or RSR file associated with the file to be copied. The resulting copy will have the same file
attributes and data fork as the original, but it will have no resource fork.

Parameters:

OldFilePath A text expression containing the fully-qualified name of the file to be
copied.

NewFilePath A text expression containing the fully-qualified name of the copy of the file
to be created. The NewFilePath parameter specifies which disk will hold
the copy, the folder to put it in, and what its name should be. Therefore,
this path must refer to a non-existing file in an existing directory; i.e. the
volume name and folders specified must already exist, but the file name
must not.

Return Value:

ResultCode An error code indicating whether or not the file copy was created success-
fully. A non-zero result indicates that there was an error.

Platform Notes:

This routine is useful on each platform under different circumstances. On the Macintosh, this routine allows
you to copy data files and explicitly ignore the resources forks of these source files, either because they
are not needed or because the source files are located on foriegn file servers that do not support resource
forks.

Many foriegn servers have a bug which, when standard Macintosh File Manager routines are used to query
for the size of a given file’s resource fork, cause them to report arbitrary values. In these cases, the 4D
developer knows that the file to be copied has no resource fork anyway. By using the CopyDataFile
routine, the developer can avoid potential problems such as copies of files with randomly-sized resource
forks full of garbage and system crashes.

On the Windows platform, the CopyFile routine will automatically look for a file with the same name and
path as the specified source file, but with an extension of “RSR”. If such a file is found, the routine will
assume that it is the converted resource fork for the source file and will copy it as well. In situations where
this is inappropriate, you can use the CopyDataFile routine instead, which will ignore the RSR files.

If you need a routine which will copy both forks when used on the Macintosh, but will ignore the RSR file
when used on Windows, use the HFSCopyData routine and copy each file individually.

Page 19.

FilePack 2.5

HFSCopy

Description:

HFSCopy (SourcePath:T; DestPath:T): ResultCode:I

This routine is an enhanced version of the CopyFile routine. It will not only copy individual files, but can
also copy entire folders with their contents intact. It will offer improved performance when copying files on
remote volumes from the same file server.

Parameters:

SourcePath A text expression containing the fully-qualified name of the file or folder to
be copied.

DestPath A text expression containing the fully-qualified path to the folder that the
source is to be copied into. The duplicate of the source will be created in
this specifed folder, with the same simple name as the source. If an object
with this name already exists in the destination folder, an error will be
returned.

Return Value:

ResultCode An error code indicating whether or not the copy was created successfully.
A non-zero result indicates that there was an error.

Platform Notes:

When used on the Macintosh platform to copy an individual file, both the data and resource forks will be
copied. On Windows, the routine will look for an associated resource file and attempt to copy it as well.

When used to copy a folder, the entire content of the folder will always be copied.

HFSCopyData

Description:

HFSCopyData (SourcePath:T; DestPath:T): ResultCode:I

On the Macintosh platform, this routine always works the same as the HFSCopy routine: it allows you to
copy individual files or entire folders from one place to another. Both the resource and data forks will
always be copied.

On the Windows platform, this routine has the same purpose but behaves differently than HFSCopy in one
way: when the source path points to an individual file, HFSCopy will automatically look for a file with the
same path and name, but with an “RSR” extension. If found, HFSCopy will assume that this file contains
the converted Macintosh resource fork for the file, and will attempt to copy it as well. HFSCopyData, on
the other hand, will ignore the RSR files.

In all cases when the source path points to a folder, every file in the folder will be copied (including RSR
files).

Parameters:

SourcePath A text expression containing the fully-qualified name of the file or folder to
be copied.

DestPath A text expression containing the fully-qualified path to the folder that the
source is to be copied into. The duplicate of the source will be created in
this specifed folder, with the same simple name as the source. If an object
with this name already exists in the destination folder, an error will be
returned.

Page 20.

FilePack 2.5

Return Value:

ResultCode An error code indicating whether or not the copy was created successfully.
A non-zero result indicates that there was an error.

HFSMove

Description:

HFSMove (CurrentPath:T; NewParentPath:T): ResultCode:I

Given a pathname of a file or folder in the first parameter, and the pathname to any other folder on the
same volume in the second parameter, will move the existing file or folder to the subdirectory of the other
folder.

Parameters:

CurrentPath The path to the file or folder that you wish to move to a different location
in the volume’s folder hierarchy.

NewParentPath The path to the folder that is to contain the existing file or folder after the
move. This folder must be on the same volume as the file or folder to be
moved.

Return Value:

ResultCode Zero if the move was completed successfully; if an error occurs, the error
code will be returned.

HFSMoveData

Description:

HFSMoveData (CurrentPath:T; NewParentPath:T): ResultCode:I

Given a pathname of a file or folder in the first parameter, and the pathname to any other folder on the
same volume in the second parameter, will move the existing file or folder to the subdirectory of the other
folder.

Parameters:

CurrentPath The path to the file or folder that you wish to move to a different location
in the volume’s folder hierarchy.

NewParentPath The path to the folder that is to contain the existing file or folder after the
move. This folder must be on the same volume as the file or folder to be
moved.

Return Value:

ResultCode Zero if the move was completed successfully; if an error occurs, the error
code will be returned.

Page 21.

FilePack 2.5

HFSRename

Description:

HFSRename (CurrentPath:T; NewName:S): ResultCode:I

The function enables you to change the name of a file, folder or volume.

Parameters:

CurrentPath The path to the file or folder that you wish to rename.

NewName The new simple name (do not re-specify the entire path) for the file or
folder.

Return Value:

ResultCode Zero if the file or folder was renamed successfully; if an error occurs, the
error code will be returned. Usually, such errors will be caused by the
specification of a non-existing file or folder for CurrentPath, or of an
existing name for NewName.

HFSRenameData

Description:

HFSRenameData (CurrentPath:T; NewName:S): ResultCode:I

The function enables you to change the name of a file, folder or volume.

Parameters:

CurrentPath The path to the file or folder that you wish to rename.

NewName The new simple name (do not re-specify the entire path) for the file or
folder.

Return Value:

ResultCode Zero if the file or folder was renamed successfully; if an error occurs, the
error code will be returned. Usually, such errors will be caused by the
specification of a non-existing file or folder for CurrentPath, or of an
existing name for NewName.

HFSDelete

Description:

HFSDelete (ThePath:T): ResultCode:I

This routine allows you to delete a file or empty folder.

Parameters:

ThePath The full path to the file or empty folder to be deleted.

Return Value:

ResultCode Zero if the file or folder was deleted successfully; if an error occurs, the
error code will be returned. Usually, such errors will be caused by the
specification of a non-existing file or folder, or of a folder that is not
empty.

Page 22.

FilePack 2.5

HFSDeleteData

Description:

HFSDeleteData (ThePath:T): ResultCode:I

This routine allows you to delete a file or empty folder.

Parameters:

ThePath The full path to the file or empty folder to be deleted.

Return Value:

ResultCode Zero if the file or folder was deleted successfully; if an error occurs, the
error code will be returned. Usually, such errors will be caused by the
specification of a non-existing file or folder, or of a folder that is not
empty.

HFSExists

Description:

HFSExists (ThePath:T): ResultCode:I

This function enables you to test for the existence of a file or folder.

Parameters:

ThePath A text expression containing the full path to the file or folder to be tested.

Return Value:

ResultCode A value of 1 if the entry exists; zero if it does not.

HFSCatToArray

Description:

HFSCatToArray (FolderPath:T; ArrayName:S): ResultCode:I

Creates a text array containing a list of the simple names for all files and subdirectories contained in the
specified folder. Folder names will end with a path delimiter (“:” on the Macintosh, “\” on Windows), while
file names will not.

The only difference between this routine and the new HFSCatToArray2 is the manner in which the second
parameter, the array to load with the catalog entry names, is specified. In this routine, a string expression
providing the name of the array is used instead of the actual array.

Parameters:

FolderPath A text expression containing the full path to the folder whose catalog is to
be loaded.

ArrayName A string expression containing the name of the text array to be created/
replaced to store the folder’s directory. You must declare the array using
the ARRAY TEXT statement prior to calling this routine.

Page 23.

FilePack 2.5

Return Value:

ResultCode Zero if the array was loaded successfully; if an error occurs, the error code
will be returned. Usually, such errors will be caused by the specification of
a non-existing folder.

HFSCatToArray2

Description:

HFSCatToArray2 (FolderPath:T; Array:X): ResultCode:I

Creates a text array containing a list of the simple names for all files and subdirectories contained in the
specified folder. Folder names will end with a path delimiter (“:” on the Macintosh, “\” on Windows), while
file names will not.

The only difference between this routine and the original HFSCatToArray is the manner in which the
second parameter, the array to load with the catalog entry names, is specified. In this routine, the actual
array (or a dereferenced array pointer) is used instead of a string expression providing the name of the
array.

Parameters:

FolderPath A text expression containing the full path to the folder whose catalog is to
be loaded.

Array A text array to be created/replaced to store the folder’s directory. You
must declare the array using the ARRAY TEXT statement prior to calling
this routine.

Return Value:

ResultCode Zero if the array was loaded successfully; if an error occurs, the error code
will be returned. Usually, such errors will be caused by the specification of
a non-existing folder.

HFSGetCatCount

Description:

HFSGetCatCount (FolderPath:T): ResultCode:I

This routine will return a count of the number of files and folders contained by a specific folder on a
mounted volume. Used with HFSGetCatItem, it will enable you to step through the entries in a directory
and retrieve the paths to these entries, one at a time.

Parameters:

FolderPath A text expression containing the full path to the folder whose catalog is to
be counted.

Return Value:

ResultCode The top-level count of files and folders contained in the specified folder. If
the specified folder does not exist or an error occurs, a negative error code
is returned.

Page 24.

FilePack 2.5

HFSGetCatItem

Description:

HFSGetCatItem (FolderPath:T; ItemIndex:I): ItemPath:T

This routine will enable you to step through the entries in a directory and retrieve the paths to these
entries, one at a time. You should use this routine (with HFSGetCatCount) instead of HFSCatToArray
whenever the potential number of items is very large, and memory is too tight to create the entire array of
entry-names.

Parameters:

FolderPath A text expression containing the full path to the folder whose catalog is to
be counted.

ItemIndex An integer expression providing the entry-number of the item you wish to
retrieve.

Return Value:

ItemPath The full path name of the specified catalog entry.

GetSystemPath

Description:

GetSystemPath : SystemPath:T

This function returns the fully-qualified path to the system folder on your user’s machine.

GetDatabasePath

Description:

GetDatabasePath : DatabasePath:T

This function returns the fully-qualified path to the current database file as a text value.

GetStructPath

Description:

GetStructPath : StructurePath:T

This function returns the path to the user’s copy of the 4D structure file as a text value.

GetAppPath

Description:

GetAppPath : ApplicationPath:T

This function returns the fully-qualified path to the user’s copy of the 4D application (4th DIMENSION, 4D
Runtime, 4D Client or the compiled runtime/application) file, as a text value.

Page 25.

FilePack 2.5

Working With Volumes
FilePack provides these additional utility routines for working directly with volumes:

• The GetDriveVolName routine is used to read the name of a specific volume, such as the user’s dis-
kette drive, or to generate a list of all available volumes.

• The GetVolSpace routine allows you to determine the amount of space free on a given volume.

• IsVolLocked will tell you if a given volume can be written to.

• MountVolume is used to procedurally mount a remote shared volume.

• EjectVolume can be used to eject a removable volume, or to dismount a shared volume.

GetDriveVolName

Description:

GetDriveVolName (DriveNo:I): VolumeName:S

Given a physical drive number or a negative volume reference number, this routine returns the volume
name. Use this routine for identifying volumes in specific drives, or for generating a list of available vol-
umes.

Parameters:

DriveNo An integer value specifying either the physical drive containing the volume,
or a negative value specifying the logical volume reference number.

Return Value:

VolumeName The name of the volume in the designated drive, or a null string (“”) if the
drive is non-existing or empty.

Platform Notes:

On the Macintosh platform, physical drive numbers are generally in the range of 1 to 3 for diskette drives,
and greater than 3 for hard disks, CD-ROM drives, etc. Volume reference numbers always range from -1
to -n, where n is the number of mounted volumes. Volume reference numbers are assigned to drives as
they are added to the desktop, so you can always assume that drive -1 will be the startup volume.

For Windows, the routines in this package consider the “name” of a volume to be the path to its root
directory, i.e. “C:\”. Windows does support volume labels, but they are so rarely used, they are worthless
for this purpose. The root path is the only consistent naming convention that programmers can follow.

This approach causes a problem, however: removeable volumes for a given drive will all share the same
“name” — all diskettes that can be inserted in drive “A:\” will have the same name: “A:\”. This will require
some existing 4D applications to be reprogrammed, since the logic most people use when asking for a
specific diskette is to look for a desired volume name. From now on, we will have to either scan the
volume’s directory for key files, or trust the user to give us the diskette we have asked for.

The concepts of drive numbers and volume reference numbers as described here have been simulated for
Windows as much as possible. Positive drive numbers have a one-to-one correspondence with DOS drive
letters, i.e. drive 1 is always “A:\”, drive 2 is always “B:\”, etc. If you pass a positive drive number to
GetDriveVolName for a drive that does not exist, it will return a null string.

Negative drive numbers are, like volume reference numbers on the Mac, relative; passing -2 will return the
path of the second available drive. Like on the Mac, the first relative drive (-1) will always be the startup
drive.

Page 26.

FilePack 2.5

As an example, say we have a machine with one diskette drive, Windows installed on the C drive, a CD-
ROM and two network drives. GetDriveVolName will return the following:

Drive Volume Name Volume Ref. Volume Name
1 “A:\” -1 “C:\”
2 “” -2 “A:\”
3 “C:\” -3 “D:\”
4 “D:\” -4 “E:\”
5 “E:\” -5 “F:\”
6 “F:\” -6, etc. “”
7, etc. “”

This approach should make most existing code work well across platforms without further effort.

GetVolSpace

Description:

GetVolSpace (VolumeName:S): VolSpace:I

This function enables you to determine the amount of free space (in bytes) available on a specified volume.

Parameters:

VolumeName The name of a mounted volume (such as that returned by
GetVolumeName).

Return Value:

VolSpace............................. The number of free bytes on the volume specified.

IsVolLocked

Description:

IsVolLocked (VolumeName:S): ResultCode:I

Enables you to determine if a volume is write-protected, i.e. if the user has set the sliding tab on the
corner of the disk to the write-protected position.

Parameters:

VolumeName The name of a mounted volume (such as that returned by
GetVolumeName).

Return Value:

ResultCode An integer value of one if the specified volume is locked, or zero if it is not.

MountVolume

Description:

MountVolume (ZoneName:S; ServerName:S; VolumeName:S; UserName:S; PassWord:S): ResultCode:I

This function enables you to eject or dismount a specified volume.

Page 27.

FilePack 2.5

Parameters:

ZoneName.......................... The name of the desired volume’s zone, or “*” if the volume is located in
the user’s zone.

ServerName The name of the desired volume’s server machine, as specified in the
Chooser control panel.

VolumeName The name of the desired volume.

UserName The user’s name, as specified in the Chooser control panel.

PassWord The user’s password for the specified volume.

Return Value:

ResultCode Zero if the volume was successfully mounted; if an error occurred, a non-
zero error code is returned.

EjectVolume

Description:

EjectVolume (VolumeName:S): ResultCode:I

This function enables you to eject or dismount a specified volume.

Parameters:

VolumeName The name of a mounted volume (such as that returned by
GetVolumeName).

Return Value:

ResultCode Zero if the volume was successfully ejected; if an error occurred, a non-zero
error code is returned. Usually such errors are caused by passing a name of
a non-existing or non-ejectable volume.

Page 28.

FilePack 2.5

File System Dialogs
Both the MacOS and Windows provides developers with a set of standardized dialogs that can be used to
select file system objects. On the Mac, this facility is known as the Standard File Package, and on Windows,
as the Common Dialog Library.

Most applications have the familiar File menu commands called Open… and Save As…. The dialogs dis-
played by these commands allow the user to navigate through their volumes and folders and either select
an existing file to be opened, or specify a name for a new file and the folder to save it in. With the follow-
ing FilePack routines, your 4D application can make use of these file system dialogs:

• The GetFileName and PutFileName routines allow you to display the file system dialogs used to open
and save files.

• GetFolderName uses a specially modified version of the standard Open dialog that will allow your
users to select a folder, rather than a file.

Page 29.

FilePack 2.5

• GetVolumeName and GetDTVolumeName also use customized Open dialogs that allow you to ask the
user to select a volume.

The file system automatically maintains a “default” path that each subsequent dialog will display when
invoked. It’s as though the file system has a “memory,” such that once the user navigates to a specific
folder using an Open or Save As dialog, that same folder will be displayed when they next invoke such a
dialog. There are times, however, when you will want to force the file system to temporarily “forget”
where the user went last, and direct it to display a folder of your own choosing. For example, suppose your
application maintains a special folder for storing report-definition files for 4D’s Quick Report editor; you
may wish to direct the file system to display the contents of this special folder before asking the user to
select a report definition file, regardless of where the user’s last file was selected.

The GetDefaultPath routine will allow you to read the current “default” path, so that you can restore it
after your special operation is complete. You can then use the SetDefaultPath routine to set the path to
that which you desire for the purpose of the task at hand. The path you specify for this routine will then be
immediately visible in a file system dialog, the next time one is displayed.

GetFileName

Description:

GetFileName (Prompt:S; Types:S): UserPath:T

Allows you to display the Standard File Package’s Open File dialog, to allow the user of your application to
select an existing file, optionally limiting the selectable files to those of specific types.

Parameters:

Prompt String to be displayed immediately below the list of files and folders in the
standard file dialog.

Types A string expression listing from 1 to 4 4-byte Macintosh file-type codes.
Only files with one of the file type codes specified will be visible in the file
dialog. If a null string is passed, then all file types will be visible in the
dialog.

Return Value:

UserPath A text value containing the fully-qualified name of the file selected by the
user. If the user presses the dialog’s Cancel button, a null string is re-
turned.

Platform Notes:

The file types specified are used to build a standard Windows filter list for the dialog, based on 4D’s
internal file-type mapping table. You can extend this table using the MAP FILE TYPES command.

Page 30.

FilePack 2.5

GetFileName2

Description:

GetFileName2 (Prompt:S; Types:S; Left:I; Top:I; OpenLabel:S): UserPath:T

Allows you to display the Standard File Package’s Open File dialog, to allow the user of your application to
select an existing file, optionally limiting the selectable files to those of specific types. The differences
between this routine and the original GetFileName are the additional parameters Left and Top for posi-
tioning the dialog, and OpenLabel for changing the label of the dialog’s Open button.

Parameters:

Prompt String to be displayed immediately below the list of files and folders in the
standard file dialog.

Types A string expression listing from 1 to 4 4-byte Macintosh file-type codes.
Only files with one of the file type codes specified will be visible in the file
dialog (and therefore selectable by the user). If a null string is passed, then
all file types will be visible in the dialog.

Left Top Integer values specifying the location of the upper-left corner of
the dialog. Note that if the position specified places any part of the dialog
off the screen, the Standard File Package will ignore these values and place
the dialog in its default position.

Top

OpenLabel String to be used to label the dialog’s Open button. Make sure that the
string fits within the button at its usual size—the button will not be resized.
Pass an empty string (“”) to use the button’s default label.

Return Value:

UserPath A text value containing the fully-qualified name of the file selected by the
user. If the user presses the dialog’s Cancel button, a null string is re-
turned.

Platform Notes:

The file types specified are used to build a standard Windows filter list, based on 4D’s internal file-type
mapping table. You can extend this table using the MAP FILE TYPES command.

PutFileName

Description:

PutFileName (Prompt:S; DefaultName:S): UserPath:T

Allows you to display the Standard File Package’s Save File dialog, to allow the user of your application to
specify the name and folder for a new file, optionally allowing you to provide a prompt string and a sug-
gested/default name for the new file.

Parameters:

Prompt A string to be displayed immediately above the text-edit field for the new
file name in the standard file dialog.

DefaultName A string to be placed in the text-edit area for the new file-name, to act as a
default or recommended name for the new file (the user will be able to
replace this name with whatever legal name they prefer).

Page 31.

FilePack 2.5

Return Value:

UserPath The routine returns the fully-qualified name of the file specified by the
user. If the user presses the dialog’s Cancel button, it will return a null
string.

PutFileName2

Description:

PutFileName2 (Prompt:S; DefaultName:S; Left:I; Top:I): UserPath:T

Allows you to display the Standard File Package’s Save File dialog, to allow the user of your application to
specify the name and folder for a new file, optionally allowing you to provide a prompt string and a sug-
gested/default name for the new file. The differences between this routine and the original PutFileName
are the additional parameters Left and Top for positioning the dialog.

Parameters:

Prompt A string to be displayed immediately above the text-edit field for the new
file name in the standard file dialog.

DefaultName A string to be placed in the text-edit area for the new file-name, to act as a
default or recommended name for the new file (the user will be able to
replace this name with whatever legal name they prefer).

Left Top Integer values specifying the location of the upper-left corner of
the dialog. Note that if the position specified places any part of the dialog
off the screen, the Standard File Package will ignore these values and place
the dialog in its default position.

Top

Return Value:

UserPath The routine returns the fully-qualified name of the file specified by the
user. If the user presses the dialog’s Cancel button, it will return a null
string.

GetFolderName

Description:

GetFolderName (Prompt:S): UserPath:T

Presents a modified standard-file dialog, allowing the user to select an existing folder, and returns the
fully-qualified pathname for the selected folder. The dialog has an additional button called Select that will
be enabled whenever a folder is highlighted in the file list area. The Select button allows the user to close
the dialog and return the fully-qualified pathname of the highlighted folder to your procedure.

Parameters:

Prompt A string to be displayed immediately below the list of folders in the stan-
dard file dialog.

Return Value:

UserPath The fully-qualified name of the folder selected by the user. The text value
will end with a colon. If the user presses the dialog’s Cancel button, returns
a null string.

Page 32.

FilePack 2.5

GetFolderName2

Description:

GetFolderName2 (Prompt:S; Left:I; Top:I): UserPath:T

Presents a modified standard-file dialog, allowing the user to select an existing folder, and returns the
fully-qualified pathname for the selected folder. The dialog has an additional button called Select that will
be enabled whenever a folder is highlighted in the file list area. The Select button allows the user to close
the dialog and return the fully-qualified pathname of the highlighted folder to your procedure. The differ-
ences between this routine and the original GetFolderName are the additional parameters Left and Top
for positioning the dialog.

Parameters:

Prompt A string to be displayed immediately below the list of folders in the stan-
dard file dialog.

Left Top Integer values specifying the location of the upper-left corner of
the dialog. Note that if the position specified places any part of the dialog
off the screen, the Standard File Package will ignore these values and place
the dialog in its default position.

Top

Return Value:

UserPath The fully-qualified name of the folder selected by the user. The text value
will end with a colon. If the user presses the dialog’s Cancel button, returns
a null string.

GetVolumeName

Description:

GetVolumeName (Prompt:S): VolumeName:S

This function allows you to provide the user with a means of selecting a volume, and will return the se-
lected volume’s name. On the Macintosh, it displays a customized Standard-File dialog showing nothing
but the volume name, the Eject, Drive, Select and Cancel buttons, and a prompt that you supply. The user
can use the Drive and Eject buttons to display the name of the volume they wish to select, and then click
the Select or Cancel button to dismiss the dialog.

Note: This routine may not work with some INITs that extend the Standard File Package under System 7. If
you have these problems, you should use GetDTVolumeName.

Parameters:

Prompt A string expression that will display along the bottom of the dialog.

Return Value:

VolumeName The name of the selected volume, or a null string (“”) if the user cancels.

Page 33.

FilePack 2.5

GetVolumeName2

Description:

GetVolumeName2 (Prompt:S; Left:I; Top:I): VolumeName:S

This function allows you to provide the user with a means of selecting a volume, and will return the se-
lected volume’s name.

On the Macintosh, it displays a customized Standard-File dialog showing nothing but the volume name,
the Eject, Drive, Select and Cancel buttons, and a prompt that you supply. The user can use the Drive and
Eject buttons to display the name of the volume they wish to select, and then click the Select or Cancel
button to dismiss the dialog. The differences between this routine and the original GetVolumeName are
the additional parameters Left and Top for positioning the dialog.

Parameters:

Prompt A string expression that will display along the bottom of the dialog.

Left Top Integer values specifying the location of the upper-left corner of
the dialog. Note that if the position specified places any part of the dialog
off the screen, the Standard File Package will ignore these values and place
the dialog in its default position.

Top

Return Value:

VolumeName The name of the selected volume, or a null string (“”) if the user cancels.

GetDTVolumeName

Description:

GetDTVolumeName (Prompt:S): VolumeName:S

This function allows you to provide the user with a means of selecting a volume, and will return the se-
lected volume’s name. When called under System 6.0, it behaves exactly the same as the GetVolumeName
routine. When called under System 7.0 (or some future release of 6.0 that supports the new Standard File
Package and Aliases), it will display the familiar standard file dialog, forcing the user to view the Desktop
pseudo-directory and to select a volume from its scrollable list. The advantage of this approach under
System 7 is that you can place aliases to unmounted shared/server volumes on the desktop, and the user
will be able to select and mount these volumes. Another advantage is that this routine is much less likely to
run into problems with INITs that patch or extend the Standard File Package.

Parameters:

Prompt A string expression that will display along the bottom of the dialog.

Return Value:

VolumeName The name of the selected volume, or a null string (“”) if the user cancels.

Page 34.

FilePack 2.5

GetDTVolName2

Description:

GetDTVolName2 (Prompt:S; Left:I; Top:I): VolumeName:S

This function allows you to provide the user with a means of selecting a volume, and will return the se-
lected volume’s name. When called under System 6.0, it behaves exactly the same as the GetVolumeName
routine. When called under System 7.0 (or some future release of 6.0 that supports the new Standard File
Package and Aliases), it will display the familiar standard file dialog, forcing the user to view the Desktop
pseudo-directory and to select a volume from its scrollable list. The differences between this routine and
the original GetDTVolumeName are the additional parameters Left and Top for positioning the dialog.

Parameters:

Prompt A string expression that will display along the bottom of the dialog.

Left Top Integer values specifying the location of the upper-left corner of
the dialog. Note that if the position specified places any part of the dialog
off the screen, the Standard File Package will ignore these values and place
the dialog in its default position.

Top

Return Value:

VolumeName The name of the selected volume, or a null string (“”) if the user cancels.

GetDefaultPath

Description:

GetDefaultPath

Determines the path name for the standard-file package’s current “default” directory. The “default”
directory is the one most recently viewed by the user in a standard-file package dialog, and is the one the
user will expect to see the next time a standard-file package dialog is displayed.

Return Value:

DefaultPath A text value containing the fully-qualified path name for the directory most
recently seen by the user in a standard-file package dialog.

SetDefaultPath

Description:

SetDefaultPath (NewDefPath:T): ResultCode:I

Allows you to specify a new folder for the standard-file package’s current “default” directory. The “de-
fault” directory is the one most recently viewed by the user in a standard-file package dialog, and is the
one the user will expect to see the next time a standard-file package dialog is displayed.

Parameters:

NewDefPath The fully-qualified path of the directory you wish your user to see the next
time any standard-file package dialog is displayed. The pathname must
specify an existing directory (folder or volume).

Page 35.

FilePack 2.5

Return Value:

ResultCode Zero if the directory was assigned successfully; if an error occurs, the error
code will be returned. Usually, such errors will be caused by the specifica-
tion of a directory that does not exist.

	Introduction
	File System Attributes
	GetFileCreator
	GetFileType
	SetFileCreator
	SetFileType
	GetFileInfo
	SetFileInfo
	GetFileCDate
	GetFileCTime
	GetFileCSeconds
	SetCDateTime
	GetFileMDate
	GetFileMTime
	GetFileMSeconds
	SetMDateTime
	GetFileBDate
	GetFileBTime
	GetFileBSeconds
	SetBDateTime
	GetFileLogSize
	GetFilePhySize
	GetFileLocked
	SetFileLocked
	GetFileStatnry
	SetFileStatnry
	GetFileVisible
	SetFileVisible

	The Hierarchical Filing System
	NewFolder
	HFSParentName
	HFSShortName
	CopyFile
	CopyDataFile
	HFSCopy
	HFSCopyData
	HFSMove
	HFSMoveData
	HFSRename
	HFSRenameData
	HFSDelete
	HFSDeleteData
	HFSExists
	HFSCatToArray
	HFSCatToArray2
	HFSGetCatCount
	HFSGetCatItem
	GetSystemPath
	GetDatabasePath
	GetStructPath
	GetAppPath

	Working With Volumes
	GetDriveVolName
	GetVolSpace
	IsVolLocked
	MountVolume
	EjectVolume

	File System Dialogs
	GetFileName
	GetFileName2
	PutFileName
	PutFileName2
	GetFolderName
	GetFolderName2
	GetVolumeName
	GetVolumeName2
	GetDTVolumeName
	GetDTVolName2
	GetDefaultPath
	SetDefaultPath

